Approaches for Industries to Substitute Hazardous Chemicals

Dr Anna Lennquist, ChemSec SUBSPORT Project

HangZhou March 25 2013

Programme

- Background
 - ChemSec
 - SUBSPORT
- Substitution definitions and steps
- How to prioritize chemicals for phase-out
 Presentation of the SIN List
- How to find alternatives
 - Presentation of the features of the SUBSPORT case story database
- How to assess and compare alternatives
 - The Green Screen for Safer Chemicals

BACKGROUND

MOVING TOWARDS SAFER ALTERNATIVES

Sweden-based non-profit organisation

Founded by four NGOs representing the Swedish environmental movement

Since 2002 working internationally to eliminate the use of hazardous chemicals

Funding from governments and charity funds

Offering concrete tools and highlighting positive examples

→ Effective chemicals regulations

Business dialogue
 → Products free of hazardous chemicals

Financial investors Avoid investments in high concern chemicals

The problem with hazardous chemicals in processes and products

- Increasing use of chemicals
- Largely unknown properties
- Well-studied hazardous chemicals used in products and processes
- Carcinogens, persistent chemicals, reprotoxic or hormone disrupting
- Increasingly linked to common diseases
- Human suffering, environmental problems and economic consequences

Substitution as the key approach to reduce the problems with hazardous chemicals

- Eliminates the problem from the whole life cycle: production, use and waste
- Risk management never 100% sure
- Driver for innovation
- Increased legal requirements and governmental incentives
- Increased customer demand
- Competitive advantage

SUBSPORT: SUBstitution Support PORTal

"Develop an internet portal that constitutes a state-ofthe-art resource on safer alternatives to hazardous chemicals"

Project duration 2010-2013 Funded by EU Life+, BAuA and Lebensministerium Austria

SUBSPORT outcomes

- Web portal with information to support substitution
- Database of alternatives and case stories
- Training on substitution and alternatives assessment
- Everything in four languages: English, German, Spanish and French

MOVING TOWARDS SAFER ALTERNATIVES

Home News

Newsletter

About the Project

Substitution Steps

Substitution in Legislation

Identifying substances of concern

Restricted and Priority Substances Database

> **Case Story** Database

Substitution Tools

Training

Support for Substitution

Substitution of hazardous chemicals is a fundamental measure to reduce risks to environment, workers, consumers and public health.

Legislation encourages you to substitute, this site will show you how.

Read more

Differential Effects of Bisphenol A and Diethylstilbestrol on Human, Rat and Mouse Fetal Leydig Cell Function

Publications & Tools 29.01.2013

A French research group (University Paris Diderot) observed a negative effect of Bisphenol A on testosterone production and INSL3 (an insulin like hormone produced mainly in gonadal tissues in males and females) expression during fetal life: It can impair the masculinisation of internal and external genitalia.

Read more

Substitution Steps

Substitution may be fast and easy or a more complex process. Generally it includes the following steps:

1. Define the problem

- 2. Set substitution criteria
- 3. Search for alternatives
- 4. Assess and compare alternatives
- 5. Experiment on pilot
- 6. Implement and improve

Read more

22 💻 📕 🛄

Search SUBSPORT

Training

Alternatives identification and assessment

Financial Support by

Here you can find information to support your efforts in substituting hazardous substances. Enjoy exploring the portal and please do not hesitate to contact the project team for any comments or questions.

SUBSPORT is an ongoing project. Therefore we recommend to revisit the portal from time to time if you could not yet find the information you expected. To keep yourself informed about the progress of the portal and other related news you can subscribe to the SUBSPORT newsletter.

twitter.

Welcome to SUBSPORT the Substitution Support Portal!

About t

Substitu

Subs

sub

Rest

Priority S

Substitu

Financial

	MOVING TOWARDS SAF
 Home 	
News	www.subsport.eu
lewsletter	Differen
he Project	Case story databas
tion Steps	Human,
titution in egislation	Substitution meth
dentifying stances of concern	Substitution Summaries of inte
ricted and ubstances Database	regulation of relev
Case Story Database	How to identify ha
tion Tools	you how. the mascu
Training	Restricted and Price
	Database ≈ 30 lists
	How to assess alte
Support by	methods and tool

ER ALTERNATIVES

Sebestrol on

odology

rnational chemicals ance for substitution

azardous substances

ority Substances

ernatives, links to

tion Support Portal! methous and tools

Search entry to \approx 25 (other) substitution Therefore we recommend to revisit the portal from time to time if

databases information you expected. To keep yourself informed about the progress of

222 - E Search SUBSPORT **Website** Restricted and priority substances database » link Case story database » link Search » Overview External substitution websites and databases Search Your contribution Provide substitution examples **Provide feedback** Training Alternatives identifi-

cation and assessment

twitter

Trainings

- About 20 held in Europe 2012
- Original format 5 hours
- Based on discussions and sharing of experiences among participants in a smaller group

SUBSTITUTION DEFINITIONS AND STEPS

MOVING TOWARDS SAFER ALTERNATIVES

Definitions

Substitution is "...the replacement of one substance by another with the aim of achieving a lower level of risk." European Chemical Industry Association CEFIC

"The Principle of Substitution states that hazardous chemicals should be systematically substituted by less hazardous alternatives or preferably alternatives for which no hazards can be identified." Greenpeace

"... the replacement or reduction of hazardous substances in products and processes by less hazardous or non-hazardous substances, or by achieving an equivalent functionality via technological or organisational measures." Lohse/Lissner (2003)

Definitions

Substitution is "...the replacement of one substance by another with the aim of achieving a lower level of risk." European Chemical Industry Association CEFIC

"The Principle of Substitution states that hazardous chemicals should be systematically substituted by less hazardous alternatives or preferably alternatives for which no hazards can be identified." Greenpeace

"... the **replacement or reduction** of hazardous substances in products and processes by less hazardous or non-hazardous substances, or by achieving an **equivalent functionality** via **technological or organisational measures**." Lohse/Lissner (2003)

Stakeholders in substitution

Substitution steps

Low-hanging fruits: copy others!

Otherwise:

- •Define the problem
- •Define use, function and need of the substance
- Define criteria for the alternative
- Search for alternative solutions
- •Evaluate and compare alternatives
- •Test on pilot scale
- Implement substitution

Small exercise: Take a few minutes to think about:

- In what way is substitution relevant for your work?
- In your situation, are you concerned about any specific chemicals or chemical groups that you consider to substitute?

HOW TO PRIORITIZE CHEMICALS FOR PHASEOUT

Prioritize substances

Legal requirements -Priority lists -Restrictions -Bans

Other

-Restricted substances lists (RSL)-Supply chain requirements-NGO campaigns

MOVING TOWARDS SAFER ALTERNATIVES

Support for Substitution

Substitution of hazardous chemicals is a fundamental measure to reduce risks to

Latest News

Roadmap on Substances of Very High Concern

Publication & Tools | 15.02.2013

The European Commission has published its roadmap for the identification of substances of very high concern (SVHCs) and implementation of REACH risk management measures from now to 2020. According to a

Substitution Steps

Substitution may be fast and easy or a more complex process. Generally it includes the following steps:

1. Define the problem

H

SUBSPORT Restricted and priority substances database

About 30 lists

Marked by category:

- International Agreement
- EU regulatory List
- Governmental List
- NGO or Tradeunion List
- Company List

COLOUR CODE

International Agreement EU Regulatory List Governmental List NGO or Trade Union List Company List

Including further information and links to each list

RESTRICTED AND PRIORITY SUBSTANCES DATABASE

Search for

• Substance name	Name fragment	O Exact name
O CAS No.		
O EC No.		
all substances		
in		
Substance lists		
all 29 lists		•
Search Database		

The SIN List Staying ahead

Joint NGO initiative

Identifies high concern chemicals

Based on EU law: using criteria set up for *Substances of Very High Concern* in REACH.

Joint NGO initiative

Identifies high concern chemicals

Based on EU law: using criteria set up for *Substances of Very High Concern* in REACH

➔ Speed up REACH implementation and inspire other regulatory processes

➔ Offer concrete guidance for companies to focus their substitution efforts

SIN 1.0 presented in 2008, 2.0 in 2011 and 2.1 in 2013

Basic principles

Targets substances in the scope of REACH authorisation: not pesticides, pharmaceuticals, intermediates, substances not intentionally produced

Based on publically available data

Exclusive rather than inclusive

CMRs

SIN LIST

equivalent level of concern substances

Persistant Bioaccumulativeand ToxicSelected from EUPBT Working Group List

equivalent level of concern substances **CMRs**

CMRs

SIN LIST

Carcinogens, Mutagens and Reprotoxic Selected from GHS/CLP classification

equivalent level of concern substances

SIN LIST

equivalent level of concern substances

Equivalent level of concern Case by case assessment based on scientific reviews

CMRs

Who uses the SIN List?

Database visitors from all over the world

Used multinational companies by e.g. B&Q, Skanska, Dell, Carrefour, Nokia, H&M, IKEA

Being discussed and referered to in regulatory processes in the EU but also elsewhere

A main driver for innovation among chemical producers in the EU according to a recent study

Financial investors and analysts to predict future bans and minimize risks of investment

HOW AND WHERE TO FIND ALTERNATIVES

MOVING TOWARDS SAFER ALTERNATIVES

Use, function and need

Function refers to the intrinsic property of the substance that is technologically important to the specified **use** and to satisfy the specified **need**.

Use refers to the application of the function in a process/product.

Need refers to the ultimate benefit for the user. Needs may be reflected by norms (e.g. quality or safety norms) or may be inspired by customer/users' preferences or by the efforts to overcome competition. Needs, as defined here, may be stringent and compulsory (fire safety) or optional (bright finishing, fragrance).

E.g. Phthalates in toys Deca BDE in computer casings

To find alternatives

- In-house knowledge
- Trade associations
- Networks, e.g Swedish national substitution group
- Reports from authorities (e.g. ECHA, US EPA)
- Web-based resources

Databases Overview

External Substitution Websites and Databases Overview

Search the following websites and databases in one step:

- catsub.eu
- cleantool.org
- istas.net/risctox/alternativas
- substitution-cmr.fr
- turi.org
- acc2000.gencat.net/mediamb_tecno
- cleanersolutions.org
- cleanproduction.org
- cprac.org
- epa.gov/dfe
- epa.gov/lean
- iehn.org
- ihobe.net
- Infocarquim.insht.es
- irsst.qc.ca/solub
- istas.net/fittema/att
- connect.innovateuk.org
- mass.gov/eea
- noharm.org
- praevention-dp-bgetem.bg-kooperation.de
- pius-info.de
- p2pays.org
- sustainablehospitals.org
- sustainableproduction.org
- umweltschutz-bw.de
- who.int/ifcs

» Back to Search

(Danish, English, French, German) (English, French, German, Spanish) (Spanish) (French)

Website

Training

Alternatives identification and assessment

Edit this entry

Information provided in a case story

Chemical identity of the substituted substance and the alternative

Description of the substitution; reasons for substitution, if there are technical or economic aspects of the substitution

Links, contact details to further information

Simple hazard assessment and evaluation of the substitution according to SUBSPORT criteria

Search SUBSPORT	
O Website	
Restricted and	_
database » link	5
Case story database » link	
Search » Overvi	ew

MOVING TOWARDS SAFER ALTERNATIVES

205-EN, General section

An alternative to phthalates: Novel plastic softener produced from castor oil and acetic acid

Abstract

Danisco has successfully developed a bio-based plastic softener on the basis of castor oil and acetic acid. According to studies the product shows no adverse effect on human health or the environment, and has found applications in production of food wrapping, medical equipment and children's toys. Novel applications are being tested, one of them being vinyl flooring.

Substituted substance(s)

» show more substance information

1. Phthalates

Alternative substance(s)

- 1. Acetic acid CAS No. 64-19-7 EC No. 200-580-7 Index No. 607-002-00-6
- 2. Castor oil CAS No. 8001-79-4 EC No. 232-293-8
- » Show application information

MOVING TOWARDS SAFER ALTERNATIVES

191-EN, General section

Animal dolls made without synthetic materials, flame-retardants, allergens or PVC

Abstract

Animal dolls for children may contain a number of hazardous chemicals, such as flame-retardants, PVC, phthalates. Using natural materials such as organic cotton, wool and linen the amount of hazardous chemicals can be reduced.

Substituted substance(s)

- 1. Polyvinyl chloride (PVC) CAS No. 9002-86-2
- 2. Phthalates
- DecaBDE CAS No. 1163-19-5 EC No. 214-604-9
- 4. Tetrabromobisphenol A (TBBPA) CAS No. 79-94-7 EC No. 201-236-9 Index No. 604-074-00-0
- Hexabromocyclododecane (HBCDD) CAS No. 3194-55-6, 25637-99-4 EC No. 221-695-9, 247-148-4

Other type of alternative

Using natural, organic materials instead of synthetic materials.

» show more substance information

TO ASSESS AND COMPARE ALTERNATIVES

MOVING TOWARDS SAFER ALTERNATIVES

Alternatives assessment

The fundament for informed substitution

Addresses the question: what is actually better?

Considers one or more of the aspects:

Hazard assessment

- Functionality of alternatives
- Availability of alternatives

Costs

Changes of processes

Life-cycle considerations: energy, waste/discharge etc.

Current initiatives regarding alternatives assessment

In the US discussed for different regulations, e.g in California Part of the authorisation process under REACH in the EU OECD ad hoc group on substitution of harmful chemicals

Commonly referred experts:

Lowell centre and Toxics Use reduction Institute, TURI, Massachusetts

US EPA Design for the Environment

Clean Production Action: the Green Screen for safer chemicals SUBSPORT

Integrated Alternatives Assessment

EMICAL SECT

Alternatives hazard assessment

Several methods available, in SUBSPORT 10 tools are presented

Some include exposure (risk), others do not

Methods that display hazards:

Column Model Pollution Prevention Options Analysis System (P2OASys) TURI 5 Chemicals Alternatives Assessment Study COSHH Essentials DfE Alternatives assessment

Sifting methods:

Green Screen for Safer Chemicals Quick Scan

The green screen for safer chemicals

The green screen for safer chemicals,

Developed by an American NGO: Clean Production Action

Uses all available relevant sources, including scientific literature

Evaluates the intrinsic hazard, not the risk

Evaluates chemicals (rather than materials or mixtures)

Considers models (e.g structure-activity-relationship) when data is missing

- Considers degradation products
- Has a methodology to consider datagaps

Freely available to use, can also buy assessments from authorised profilers

Gives the chemical a benchmark-easy to compare

http://www.cleanproduction.org/Greenscreen.v1-2.php

GreenScreen **Benchmarks**

Hazard enpoints

Human Health Group I	Human Health Group II	Environmental Toxicity* & Fate	Physical Hazards
Carcinogenicity	Acute Toxicity	Acute Aquatic Toxicity	Reactivity
Mutagenicity & Genotoxicity	Systemic Toxicity & Organ Effects	Chronic Aquatic Toxicity	Flammability
Reproductive Toxicity	Neurotoxicity	Persistence	
Developmental	Skin Sensitization	Bioaccumulation	
Toxicity	Respiratory Sensitization		
Endocrine Activity	Skin Irritation	*Other Ecotoxicity	
	Eye Irritation	Studies when available	

Hazard table

- The hazard endpoints are translated into hazard levels: very high (vH), high(H), moderate (M) and low (L), visualised with colours
- The level of confidence is indicated using italics (e.g modeled data) or bold letters (authorative classification)
- Datagaps are indicated with DG

Chemical	Group I Human					Group II Human							Ecotox		Fate		Physical	
Name	С	Μ	R	D	Ε	AT	ST	Ν	SnS	SnR	IrS	IrE	AA	CA	Ρ	В	Rx	F
Chemical 1	Μ	L	L	Μ	Μ	L	L	М	L	DG	L	н	L	L	νH	Μ	L	L
Chemical 2	L	L	Μ	Μ	н	L	н	М	L	L	Μ	Μ	н	н	νH	νH	L	L
Chemical 3	L	L	М	Н	DG	L	н	DG	L	DG	L	L	L	DG	М	М	L	М

Abbreviations: C = Carcinogenicity, M = Mutagenicity, R = Reproductive Toxicity, D = Developmental Toxicity, E = Endocrine activity, AT = Acute mammalian toxicity, ST = Systemic toxicity, N = Neurotoxicity, SnS = Skin sensitization, SnR = Respiratory sensitization, IrS = Skin irritation, IrE = Eye irritation, AA = Acute aquatic toxicity, CA = Chronic aquatic toxicity, P = Persistence, B = Bioaccumulation, Rx = Reactivity, F = Flammability

GreenScreen Benchmark Criteria

- PBT = High P + High B + (very High T (Ecotoxicity or Group II Human) or High T (Group For I* Human)]
- b. vPvB = very High P + very High B
- vPT = very High P + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- d. vBT = very High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

and its breakdown products pass all of these criteria, then move on to Benchmark 2.

BENCHMARK U

 Unspecified Due to Insufficient Data

If this chemical and its breakdown products pass all of these criteria, then move on to Benchmark 4.

BENCHMARK 1

Hazard table into benchmark

BENCHMARK 1

- PBT = High P + High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- b. vPvB = very High P + very High B
- c. vPT = very High P + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- d. vBT = very High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

Chemical	Gro	oup	Iŀ	lun	nan	Group II Human							Ecotox		Fate		Physical	
Name	С	Μ	R	D	Ε	AT	ST	Ν	SnS	SnR	IrS	IrE	AA	CA	Ρ	В	Rx	F
Chemical 1	Μ	L	L	Μ	М	L	L	М	L	DG	L	Н	L	L	νH	Μ	L	L
Chemical 2	L	L	Μ	Μ	Н	L	Η	Μ	L	L	Μ	М	Η	н	νH	νH	L	L

Hazard table into benchmark

BENCHMARK 1

- PBT = High P + High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- b. vPvB = very High P + very High B
- c. vPT = very High P + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- d. vBT = very High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

Hazard table into benchmark

BENCHMARK 1

- PBT = High P + High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- b. vPvB = very High P + very High B
- c. vPT = very High P + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- d. vBT = very High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I or II* Human)]
- e. High T (Group I Human)

Avoid—Chemical of High Concern

Benchmark: 1 Rationale: very High P+ very High B, HighT (group I Human)

• First see if the chemical meets the criteria for Benchmark 1, Then if it meets the criteria for Benchmark 2.

Is Chemical A a Benchmark 1?

Group I Human						Group II and II* Human									Ecotox		Fate		Physical	
С	Μ	R	D	E	AT	•1	ST		Ν	SnS*	SnR*	IrS	IrE	AA	CA	Р	B	Rx	F	
						single	repeated*	single	repeated*											
L	м	L	L	L	м	Н	н	М	м	L	L	H	н	Μ	М	L	L	L	L	

Benchmark 1 Criteria:

a.PBT = High P + High B + [very High T (Ecotoxicity or Group II Human) or High T (Group I and II* Human)]?

```
b.vPvB = very High P + very High B?
c.vPT = very High P + [very High T (Ecotoxicity or
(Group I and II* Human)]?
d.vBT = very High B + [very High T (Ecotoxicity or
(Group I or II* Human)]?
e.High T (Group I Human)?
```

<u>Abbreviations</u>: C = Carcinogenicity, M = Mutagenicity, R = Reproductive Toxicity, D = Developmental Toxicity, E = Endocrine activity, AT = Acute mammalian toxicity, ST = Systemic toxicity, N = Neurotoxicity, SnS = Skin sensitization, SnR = Respiratory sensitization, IrS = Skin irritation, IrE = Eye irritation, AA = Acute aquatic toxicity, CA = Chronic aquatic toxicity, P = Persistence, B = Bioaccumulation, Rx = Reactivity, F = Flammability

Is Chemical A a Benchmark 2?

Group I Human					Group II and II* Human									Ecotox		Fate		Physical	
C	Μ	R	D	E	AT	• 1	ST		Ν	SnS*	SnR*	IrS	IrE	AA	CA	Р	B	Rx	F
						single	repeated*	single	repeated*										
L	м	L	L	L	м	Н	н	М	м	L	L	н	н	м	М	L	L	L	L

Benchmark 2 Criteria:

a)Moderate P + Moderate B + Moderate T (Ecotoxicity or Group I, II or II* Human)?

b)High P + High B?

c)High P + Moderate T (Ecotoxicity or Group I, II or II* Human)?

d)High B + Moderate T (Ecotoxicity or Group I, II or II* Human)?

e)Moderate T (Group I Human)?

f)very High T (Ecotoxicity or Group II Human) or High T (Group II* Human)?

g)High Flammability or High Reactivity?

<u>Abbreviations</u>: C = Carcinogenicity, M = Mutagenicity, R = Reproductive Toxicity, D = Developmental Toxicity, E = Endocrine activity, AT = Acute mammalian toxicity, ST = Systemic toxicity, N = Neurotoxicity, SnS = Skin sensitization, SnR = Respiratory sensitization, IrS = Skin irritation, IrE = Eye irritation, AA = Acute aquatic toxicity, CA = Chronic aquatic toxicity, P = Persistence, B = Bioaccumulation, Rx = Reactivity, F = Flammability

Automated Green Screen list translators for fee: Pharos and GreenWercs

6	www.pharosproject.r	net/material_chm/show,	/materialId	/1763-23-1			
-	🥹 Getting Started	🔚 Latest Headlines 👻	🇯 Apple	Yahoo!	W Wikipedia	🕂 Google Ma	ps 🗈 YouTube 📋
1	the signal ne	ews & notes	buildir	ng product	library	chemical an	d material library
	PERFLUOROOC						
	CAS RN: 1763-2 Synonyms: Perfluor	23-1 rooctane sulfonic acie	d; perfluo	rooctane su	lfonate;1-OCT	ANESULPHONI	C ACID
	Direct Chemical ar	nd Compound Hazard	Quickscre	een		De	etailed Hazard Listings
	Very High Hazard of.	 UNEP Stockholm Conv - Pollutant (POP) - Green:	• Persistent Screen Benc	Organic Pollu	tants (Stockholm 2 others}	n): Priority Persis	tent Organic
	High Hazard of						
	DEVELOPMENTAL	EC - CLP/GHS Hazard St GreenScreen Benchmark	tatements (< 1 {and 1 o	EU H-Stateme other}	ents): H360D May	damage the unbo	orn child -
	ORGAN TOXICANT	EC - CLP/GHS Hazard St or repeated exposure -	<mark>tatements (</mark> GreenScreer	EU H-Stateme n Benchmark U	nts): H372 Cause Inspecified	s damage to orga	ins through prolonged
	CHRON AQUATIC	EC - CLP/GHS Hazard St with long lasting effects	tatements (- GreenScr	EU H-Stateme	ents): H411 - Aqui enchmark 1 - occ	atic Chronic 2 - T upational hazard	oxic to aquatic life only
	Medium Hazard of						
	CANCER	EC - CLP/GHS Hazard St Benchmark Unspecified	tatements ({and 1 othe	(EU H-Stateme er}	ents): H351 Suspe	cted of causing c	ancer - GreenScreen
	MAMMALIAN	EC - CLP/GHS Hazard St Benchmark Unspecified	tatements ({and 1 othe	(EU H-Stateme er}	ents): H302 Harm	ful if swallowed -	GreenScreen
	Potential concern						
	RESTRICTED LIST	ChemSec - Substitute L GreenScreen Possible Be	.ist (SIN): Cl enchmark 1	assified CMR (Carcinogen, Muta	igen &/or Reprod	uctive Toxicant) -

CONCLUDING REMARKS

Currently hazardous chemicals are used in common processes and products, and increasingly linked to health and environmental effects

Substitution is the most efficient approach to avoid problems caused by hazardous chemicals

Substitution is increasingly required by authorities, in the supply chain and by and citizens

CONCLUDING REMARKS

TIPS BEFORE STARTING SUBSTITUTION:

Define the framework for your substitution work: -define regulatory and other criteria for prioritizing chemicals for phase-out -define the stakeholders who will be affected by the substitution

It helps to openminded in substitution:

-consider the ultimate function and need of the chemical

-the best alternative is not necessarily another chemical

Find forums to discuss substitution

CONCLUDING REMARKS

AVAILABLE RESOURCES

✓ SUBSPORT webportal for general substitution information
 ✓ SIN List and SUBSPORT database of restricted and priority substances for prioritizing chemicals
 ✓ SUBSPORT case story database for ideas for alternatives
 ✓ The Green Screen for Safer chemicals for informed substitution

✓ Coming up: OECD toolbox

Thanks for the attention!